MA Public Opinion and Political Behaviour
Integrated Master in Science: Mathematics and Data Science options

Final Year, Component 05

Options from list
Information Retrieval

Search engines have become the first entry point into a world of knowledge and they form an essential part of many modern computer applications. While much of the underlying principles have been developed over decades, the landscape of search engine technology has changed dramatically in recent years to deal with data sources magnitudes larger than ever before (the rise of 'big data'). As a result of this, new paradigms for storing, indexing and accessing information have emerged. This module will provide the essential foundation of information retrieval and equip students with solid, applicable knowledge of state-of-the-art search technology.

Text Analytics

We live in an era in which the amount of information available in textual form - whether of scientific or commercial interest - greatly exceeds the capability of any man to read or even skim. Text analytics is the area of artificial intelligence concerned with making such vast amounts of textual information manageable - by classifying documents as relevant or not, by extracting relevant information from document collections, and/or by summarizing the content of multiple documents. In this module we cover all three types of techniques.

Natural Language Engineering

As humans we are adept in understanding the meaning of texts and conversations. We can also perform tasks such as summarize a set of documents to focus on key information, answer questions based on a text, and when bilingual, translate a text from one language into fluent text in another language. Natural Language Engineering (NLE) aims to create computer programs that perform language tasks with similar proficiency. This course provides a strong foundation to understand the fundamental problems in NLE and also equips students with the practical skills to build small-scale NLE systems. Students are introduced to three core ideas of NLE: a) gaining an understanding the core elements of language--- the structure and grammar of words, sentences and full documents, and how NLE problems are related to defining and learning such structures, b) identify the computational complexity that naturally exists in language tasks and the unique problems that humans easily solve but are incredibly hard for computers to do, and c) gain expertise in developing intelligent computing techniques which can overcome these challenges.

Data Science and Decision Making

The aim of this module is to familiarise students with the whole pipeline of processing, analysing, presenting and making decision using data. This module blends data analysis, decision making and visualisation with practical python programming. Students will need a reasonable programming background as they will be expected to develop a complete end-to-end data science application.

Neural Networks and Deep Learning

The aim of this module is to provide students with an understanding of the role of artificial neural networks (ANNs) in computer science and artificial intelligence. This will allow the student to build computers and intelligent machines which are able to have an artificial brain which will allow them to learn and adapt in a human like fashion.

Big-Data for Computational Finance

This module is a mix of theory and practice with big data cases in finance. Algorithmic and data science theories will be introduced and followed by a thorough introduction of data-driven algorithms for structures and unstructured data. Modern machine learning and data mining algorithms will be introduced with particular case studies on financial industry.

Network Analysis

Everything in the world is linked together. This module introduces you to the knowledge of “networks” to disclose the mystery behind these links. An introduction to networks, the most common types of networks, and their mathematical properties, as well as typical network models, will be delivered in this module. You will also learn programming skills using Python/R to create and analyse real-world networks.

Survival Analysis

What are the principles of actuarial modelling? And what are survival models? Examine how calculations in clinical trials, pensions, and life and health insurance require reliable estimates of transition intensities/survival rates. Learn how to estimate these intensities. Build your understanding of estimation procedures for lifetime distributions.

Group Theory

Group theory is the study of symmetries, which are the actions that rotate polyhedrons such as the cube and they permeate science at large, playing an important role in physics (such as the standard model of particle physics ), chemistry (molecules, crystals, materials science…), cryptography or even music! In this module you will learn advanced constructions and techniques in modern group theory, with special emphasis on the study of finite groups.

Data Visualisation

In a world increasingly driven by data, the need for analysis and visualisation is more important than ever. In this module you will look at data through the eyes of a numerical detective. You will work on the lost art of exploratory data analysis, reviewing appropriate methods for data summaries with the aim to summarise, understand, extract hidden patterns and identify relationships. You will then work on graphical data analysis, using simple graphs to understand the data, but also advanced complex methods to scrutinise data and interactive plots to communicate data information to a wider audience. For data analysis and visualisations you will use R-studio, and a combination of R-shiny applications and google visualisations for interactive plotting.

Stochastic Processes

Ever considered becoming an Actuary? This module covers the required material for the Institute and Faculty of Actuaries CT4 and CT6 syllabus. It explores the stochastic process and principles of actuarial modelling alongside time series models and analysis.

Applied Statistics

How do you apply multivariate methods? Or demographical and epidemiological methods? And how do you apply sampling methods? Study three application areas of statistics – multivariate methods, demography and epidemiology, and sampling. Understand how to apply and assess these methods in a variety of situations.

Bayesian Computational Statistics

What do you understand about Bayes’ theorem and Bayesian statistical modelling? Or about Markov chain Monte Carlo simulation? Focus on Bayesian and computational statistics. Understand the statistical modelling and methods available. Learn to develop a Monte Carlo simulation algorithm for simple probability distributions.

Dynamic programming and reinforcement learning

Are you interested in understanding how AlphaGo was able to beat a top Go player? In this module, you will learn about the models behind successful stories of Reinforcement Learning, where a machine (agent) makes sequential decisions to reach an optimal goal. The lectures will be complemented with Lab sessions where we will take advantage of the Open AI Gym environments, allowing us to train our agents to perform tasks such as playing videogames (Atari) and more.

At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.

Find out more

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications. The University would inform and engage with you if your course was to be discontinued, and would provide you with options, where appropriate, in line with our Compensation and Refund Policy.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.